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USE OF DYNAMIC MODELS I N  LAUNCH-VEHICLE DEVELOPMENT 

I By H. L. Runyan*, H.  G. Morgan**, and J. S. Mixson*** 

NASA Langley Research Center 

ABSTRACT 

This paper discusses t h e  ro le  of reduced scale  models i n  the  solut ion of 
t he  s t ruc tu ra l  dynamic problems of la rge  launch vehicles.  A general discussion 
of scal ing pr inc ip les  i s  given followed by tabulation of the  spec i f ic  parameters 
fo r  scal ing of becding, longitudinal,  and loca l  vibrat ions;  l i qu id  sloshing; 
combined elastic-aerodynamic buffet ;  f l u t t e r ;  and ground wind phenomenon. Three 
examples of t he  use of models a t  Langley Research Center a r e  presented i l l u s t r a -  
t i n g  the  u t i l i t y  of reduced scale  models. 

INTRODUCTION 

For many years models have played a v i t a l  ro l e  i n  the  study and solut ion 
of a var ie ty  of problems i n  the  f i e l d s  of physics and engineering. It i s  the  
purpose of this paper t o  i l l u s t r a t e  the  l a t e s t  use of model techniques f o r  
studying the  s t r u c t u r a l  dynamic problems of large launch vehicles.  The type of 
model t o  be discussed herein i s  the  physical model, usual ly  of reduced s i ze ,  
having varying degrees of s imi l a r i t y  t o  the  fu l l - sca le  f l i g h t  hardware. Mathe- 
matical  and e l e c t r i c a l  analog models, f o r  example, w i l l  not be discussed. 

The basic  reasons f o r  using models a re  the same f o r  launch vehicles as 
they have been h i s to r i ca l ly ,  t h a t  i s ,  models provide a means whereby necessary 
data may be obtained with less expenditure of t i m e ,  money, and e f f o r t  than would 
be required f o r  other  means of data col lect ion such a s  fu l l - s ca l e  t e s t i n g  or  
calculat ions.  The importance of models has increased, however, as new or more 
complex f i e l d s  a re  entered, as the  required data become more c r i t i c a l ,  and a s  
the  information obtainable by other means becomes less cer ta in .  For example, 
consider t he  phenomenon of buffet  i n  re la t ion  t o  t h e  r e s t r i c t i o n  on s t r u c t u r a l  
weight of today's large space boosters. A s  s t ruc tu ra l  weight i s  reduced t o  
increase performance, t he  r i g i d i t y  of s t ruc tu ra i  members such a s  f a i r ings  and 
panels i s  reduced, thereby increasing the  l ikelihood of large dynamic response. 
I n  these circumstances, model s tudies  of these problems are often t h e  bes t  means 
of obtaining t h e  required data. 

The space age i s  a na tu ra l  outgrowth of t he  av ia t ion  age. In  the  design 
and development of a i r c r a f t ,  model technology w a s  reaching a very advanced stage. 
For instance,  a f l u t t e r  model of t h e  research a i r c r a f t  X - 1 E  which contained a 
complete duplication of t he  control  system, involving scaled linkage and damping 
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charac te r i s t ics  a s  well  as the  de ta i led  wing e l a s t i c  and dynamic propert ies  w a s  
constructed several  years ago a t  Langley Research Center. Indus t r i a l  companies 
have successfully constructed and tested very de ta i led  aeroe las t ic  models of 
most of the current j e t  a i r c r a f t  a s  w e l l  as scaled s t ruc tu ra l  models of de l t a  
wings. Models have a l so  been used f o r  gust research, landing loads, dynamic 
s t a b i l i t y ,  e t c .  Models were very extensively used i n  the  design of t he  X-15 
rocket a i r c r a f t  and the  success of t h i s  research airplane i s  due i n  p a r t  t o  t h e  
thorough model program. 

Seemingly, with t h i s  large background of experience, extension t o  la rge  
boosters would have seemed na tura l .  
models, the developed technology has not been extensively u t i l i z e d .  This may be 
a t t r ibu ted ,  i n  pa r t ,  t o  t he  f a c t  t h a t  many boosters were constructed under crash 
programs. The National Aeronautics and Space Administration i s  now becoming one 
of t he  major users of la rge  boosters, and since many NASA launchings involve 
very expensive payloads and a re  l i m i t e d  i n  number, r e l i a b i l i t y  has become an 
important consideration. In  an e f f o r t  t o  insure t h a t  t he  vehicles are r e l i ab le ,  
models are playing an increasing ro le .  

Except f o r  aerodynamic tests on r i g i d  

SYMBOLS 

I 

1, 

I' 

K 

k 

L 

M 

m 

cross-sectional area, f t*  

longitudinal acceleration, f t  /see2 

Young's modulus, l b / f t 2  

frequency, cps 

torsion modulus, lb / f t*  

l iqu id  depth, f t  

cross-sectional moment of i n e r t i a ,  f t  4 

mass moment of i n e r t i a  per  u n i t  length,  s lug- f t2 / f t  

mass moment of i n e r t i a ,  slug-ft '  

shear constant 

cross-sectional radius of gyration, f t  

character is t ic  length, f t  

mass, slugs 

mass p e r  un i t  length,  s lugs / f t  
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Mach number 

Reynolds number 

i n t e r n a l  pressure, l b / f t2  

tank radius,  f t  

s t a t i c  mass unbalance about e.a. per  un i t  length,  s lug - f t / f t  

tank w a l l  thickness, f t  

veloci ty ,  f t / s ec  

e l a s t i c  axis locat ion,  f t  

surface roughness cha rac t e r i s t i c  length, f t  

li quid v i  s cosi  t y  , slugs/ f t -sec 

Poisson's r a t i o  

density,  s lugs / f t3  

cha rac t e r i s t i c  t i m e ,  sec 

c i r c u l a r  frequency, radians/sec 

c i r c u l a r  bending frequency, radians/sec 

c i r cu la r  to rs ion  frequency, radians/sec 

Subscripts : 

2 l i q u i d  

m model 

P prototype 

W tank w a l l  

PROBLEM AREXS 

A launch vehicle i s  a very e f f i c i e n t  s t ructure;  as much as 90 percent of 
t h e  weight a t  l i f t - o f f  may be propellant,  leaving only 10 percent f o r  basic  
s t ruc ture ,  propulsion, and payload. The vehicles a r e  designed on the  basis of 
s t rength with small fac tors  of safety,  and t h i s  design condition r e s u l t s  i n  a 
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vehicle t h a t  has low r e l a t i v e  s t i f f n e s s .  Consequently, t he  various dynamic 
problems are accentuated since the  response i s  more a function of s t i f f n e s s  ( E I )  
than strength. 

I n  figure 1 i s  shown a schematic of a typ ica l  launch vehicle and a l i s t i n g  
of some of the more important load sources. 
t i m e  of f l i g h t  aspect, the f i rs t  major loading occurs while the vehicle i s  on 
the  launch pad before engine ign i t ion  and i s  due t o  ground winds. These winds 
can impose large loads on the vehicle i n  the  direct ion of t h e  wind as a steady 
or osci l la tory drag load. I n  addition, osc i l la tory  loads i n  a direct ion normal 
t o  the  wind direct ion may be imposed which a r e  caused by the  Karman vortex 
street  o r  flow breakdown around the  cy l indr ica l  shape. Due t o  engine ign i t ion  
and launcher release,  longitudinal osc i l la t ions  may be induced which are impor- 
t a n t ,  both from a basic s t r u c t u r a l  standpoint and from an equipment environment 
standpoint. This input may be par t icu lar ly  important f o r  solid-propellant vehi- 
c l e s  a t  igni t ion since the  most e f f i c i e n t  grain s t ructure  includes a chamber 
the  length of the rocket stage and the  sudden increase i n  pressure i s  f e l t  by 
the complete stage. Also a t  engine ign i t ion  a high l e v e l  of random vibrat ion 
i s  produced which may be transmitted t o  the  vehicle s t r u c t u r a l l y  o r  acoust ical ly .  
These wind, longitudinal,  and engine vibratory loads can a l s o  take important new 
forms i f  t he  vehicle i s  launched from a s i l o  or underwater. 

Discussing these loads from the  

The most important f l i g h t  regime from t h e  standpoint of loads occurs 
during transonic f l i g h t  and continues u n t i l  t he  maximum dynamic pressure con- 
d i t i o n  has been passed. During t h i s  phase of the f l i g h t  there a r e  a number of 
s t a t i c  and dynamic loading sources which are ac t ing  simultaneously. 
p a r t  of the load-carrying capabi l i ty  of t h e  s t ruc ture  i s  required j u s t  t o  sus- 
t a i n  the  s t a t i c  loads, such as a x i a l  accelerat ion and aerodynamic drag. This 
makes the accurate determination of t he  dynamic loads, which are of concern i n  
t h i s  paper, very important since only a small amount of s t r u c t u r a l  capabi l i ty  
remains a f t e r  the s t a t i c  loads are imposed on the  vehicle. Most important of 
t h e  dynamic loads a r e  probably those due t o  horizontal  winds and wind gradients. 
Also,  buffet  loads a r i s i n g  from unusual payload shapes, protuberances, e t c . ,  
can cause e i t h e r  a low-frequency exci ta t ion of the fundamental vehicle bending 
modes or a high-frequency exci ta t ion of equipment and l o c a l  s t ructure .  
same time, boundary-layer noise i s  building up and reaches a peak a t  maximum 
dynamic pressure. 

A large 

A t  t h i s  

Various s t a b i l i t y  problems may appear a t  various times during launch. Fuel 
slosh can occur any t i m e  during f l i g h t  and i s  dependent on the configuration - 
i n  par t icular ,  the location of ba f f l e s .  Of course, f l u t t e r  i s  an always present 
phenomenon - both panel f l u t t e r  and f l u t t e r  of components such as f i n s .  S t i l l  
another type of i n s t a b i l i t y  which involves t h e  automatic control  system may 
e x i s t .  Even though the control  system i s  capable of s t a b i l i z i n g  the  vehicle as 
a r i g i d  body, a feedback involving f l e x i b i l i t y  can r e s u l t  i n  violent  o s c i l l a t i o n s  
capable of destroying the vehicle.  Therefore, f o r  proper control  system desi@ 
as w e l l  as for  dynamic response calculat ions,  t h e  vibrat ion modes of t he  basic 
vehicle must be known. An i l l u s t r a t i o n  of a model f o r  obtaining vibrat ion modes 
of t he  Saturn booster will be given la te r .  

Aerodynamic heating for tunately becomes s ignif icant  l a t e  i n  t h e  f l i g h t  f o r  
t he  low acceleration vehicles normally used f o r  space missions, when most of t h e  
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above problems a r e  l e s s  serious.  
the problems which occur i n  the  lower portion of the  atmosphere. 

Thus, heating i s  more o r  l e s s  uncoupled from 
, 

GENERAL DISCUSSION OF SCALING 

Models and dimensional analysis have been the subject of many excellent 
books and papers, fo r  example, references 1 through 10. Therefore, i n  t h i s  
paper no attempt w i l l  be made t o  develop the  general theory of modeling. 
ever, some remarks concerning scaling for  s t ruc tura l  dynamic problems of launch 

How- 

' vehicles a re  i n  order. 

Types of Models 

Several c lass i f ica t ions  of models a re  possible. One such c lass i f ica t ion ,  
from reference 5 ,  divides models i n to  four categories as follows: 

I. True models 

11. Adequate models 

111. Distorted models 

IV. Dissimilar models 

The t rue  model f a i th fu l ly  reproduces a l l  s ignif icant  charac te r i s t ics  of the pro- 
totype f o r  which it i s  designed. 
i s  almost an impossibil i ty f o r  the complex interact ions involved i n  launch- 
vehicle dynamics. 
ond category of adequate models. 
o r  sa t i s fac tory  predictions of vehicle character is t ics  under a specified s e t  of 
conditions but may not completely sa t i s fy  a l l  design specifications.  
example, f l u t t e r  models typ ica l ly  a re  designed t o  keep the  Mach number the  same 
between model and prototype but f a i l  t o  s a t i s 0  Reynolds number specif icat ions.  
If some of the  design conditions a re  violated su f f i c i en t ly  t o  require correction 
of the predictions,  the model i s  "distorted." Distorted models are  often used 
where the var ia t ion  of a parameter with s ize  i s  well known. 
r i a l  propert ies  a r e  known well enough t h a t  different  materials may be used 
interchangeably and the r e s u l t s  adjusted accordingly. 

The construction and t e s t ing  of such a model 

Instead, most launch-vehicle dynamic models a re  i n  the see- 
A s  the name implies, such models give adequate 

For 

For example, mate- 

The f i n a l  type i s  the dissimilar model. While it will not be discussed 
fur ther  i n  t h i s  paper, t h i s  i s  a very useful modeling concept i n  wide use. This 
i s  a model which bears no apparent resemblance t o  the  prototype but, by analogy, 
gives r e su l t s  which can be related t o  the prototype. 
the many s t r u c t u r a l  dynamic problems which are  studied by electrical-mathematical 
models on an analog computer. 

The obvious examples a re  
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Fundamental Units 

The 
damental 
normally 
c l a s s  of 

beginning of most scal ing o r  modeling concepts i s  i n  a system of fun- 
uni t s .  For launch-vehicle dynamic problems, three such u n i t s  must 
be considered. A number of combinations of un i t s  e x i s t  but,  for  t h i s  
problems, the  M-L-T system (mass, length, and t i m e )  i s  usual ly  most 

desirable.  
sidered, a fourth un i t ,  usually temperature, must a l s o  be included. 

If heating of t h e  s t ruc ture  i s  a f ac to r  i n  the  problem being con- 

Dimensionless Ratios 

A model w i l l  exhibi t  s imil i tude t o  a prototype provided ce r t a in  dimension- 
less r a t io s  have the  same values f o r  both. These dimensionless r a t i o s  may be 
determined by a dimensional analysis  of a l l  quant i t ies  involved i n  the  problem 
o r  from the  d i f f e r e n t i a l  equations which define t h e  system. 
Pi-Theorem of Buckingham, reference 1, s t a t e s  t h a t  the  number of these inde- 
pendent, dimensionless r a t i o s  which e x i s t s  i s  equal t o  the  difference between 
the  t o t a l  number of quant i t ies  involved i n  the  problem and the  number of fun- 
damentaluni ts .  For example, i f  e ight  quant i t ies ,  such as frequency, pressure,  
viscosi ty ,  e t c . ,  are of importance i n  a problem wherein three fundamental units 
are required, f i v e  independent, dimensionless r a t i o s  can be formed from the  
eight  quant i t ies .  
provided the  f ive  dimensionless r a t i o s  had the  same value f o r  both. 

The well-known 

A model of such a system would be s i m i l a r  t o  t h e  prototype 

Scale Factors 

To design a model t o  study some pa r t i cu la r  phenomenon, sca le  fac tors  must 
be established fo r  each of t he  quant i t ies  measured by t h e  fundamental units. 
For example, these fac tors  will r e l a t e  mass, length,  and t i m e  of the  prototype 
t o  these same fac tors  of t h e  model. Choice of sca le  fac tors  f o r  a pa r t i cu la r  
model will be influenced by such things as economy, ava i lab le  t es t  f a c i l i t y  
capabi l i t i es ,  manufacturing tolerances,  and instrumentation accuracies,  but 
t h e i r  re la t ionship t o  one another must keep t h e  values of t he  per t inent  dimen- 
s ionless  r a t i o s  the same f o r  model and prototype. For example, a length sca le  
fac tor  may be establ ished by an ava i lab le  wind-tunnel tes t - sec t ion  s ize .  Then 
the time and mass scale  fac tors  might be adjusted so the  model will operate a t  
the  fu l l - sca le  Reynolds number. Usually, a l l  dimensionless r a t i o s  cannot be 
maintained a t  fu l l - sca le  values with reasonable choices of materials and sca le  
fac tors  i n  avai lable  t e s t  f a c i l i t i e s .  
based on experience and knowledge of t h e  problem, by which t h e  l e s s  important 
dimensionless r a t i o s  a re  allowed t o  deviate  from fu l l - sca l e  values. 
choice i s  made, t he  resu l t ing  model w i l l  be c l a s s i f i e d  as adequate; i f  a poor 
choice i s  made, t he  model will be d i s to r t ed .  

I n  such cases, compromises a r e  made, 

If a proper 

Scale Effects  

Scale e f f ec t s  a r e  of ten discussed as though some fundamental difference 
ex is ted  i n  the  behavior of a prototype and i t s  model. These so-called sca le  
e f f e c t s  are ac tua l ly  measures of t he  d i s t o r t i o n  of t h e  model, r e su l t i ng  from 
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1 unintentional o r  unavoidable f a i lu re  t o  maintain fu l l - sca le  values of s ignif icant  
dimensionless parameters. However, if very complex o r  p a r t i a l l y  understood phe- 
nomena a re  being investigated,  it i s  advisable t o  evaluate t h i s  d i s tor t ion  by 
t e s t ing  two models of d i f fe ren t  scales or  one model and the prototype. 

Launch-Vehicle Dynamic Models 

~ 

~ 

1 

It is  well established t h a t  models can be used most e f fec t ive ly  i f  they 
a re  individually designed t o  study spec i f ic  problems. Table I gives some idea 
of the d i f f i c u l t y  involved i n  scaling models fo r  studying various launch-vehicle 
dynamic problems. The problem areas a r e  shown on the l e f t  and the more impor- 
t a n t  dimensionless r a t io s  associated with each problem a re  l i s t e d  on the  r igh t .  
A br ief  description of some of these problems will i l l u s t r a t e  the scal ing prob- 
lems involved. 

Vibrations.- Two kinds of beam-type vibrations a re  shown, one each fo r  the 
l a t e r a l  and longitudinal directions.  Local vibrations a re  a l so  l i s t e d  i n  order 
t o  include s h e l l  and p l a t e  vibrations of local  skin sections and panels. The 
first two, o r  beam-type, vibrations could probably be included i n  one model but 
n_re separated f o r  c l a r i t y .  I f  the  vehicle being scaled behaves a s  a simple, o r  
Euler, beam, the model must be scaled from the first two dimensioniess ra t ios  
involving geometry, mass, Young's modulus, and frequency. However, i f  rotary 
i n e r t i a  and shear e f f ec t s  a r e  important, the  model must be scaled as a 
Timoshenko beam and the  addi t ional  r a t io s  involving the shear modulus, e f fec t ive  
shear area,  and mass radius of gyration of the cross sections must be included. 
I f  l o c a l  vibrations a re  the problem, s t i l l  more dimensionless r a t i o s  must have 
equal values f o r  model and prototype. Additional factors  which appear a re  s h e l l  
thickness, i n t e rna l  pressure, and density and depth of the l iqu id  contained i n  
the vehicle tanks. It i s  apparent t h a t  two models, one f o r  beam-type vibrations 
and a second f o r  a t yp ica l  l oca l  section, would probably be a be t t e r  approach 
than a s ingle  model scaled t o  duplicate both types of vibration. 

Slosh.- Another problem being studied extensively with models i s  t h a t  of 
sloshing l iqu ids .  
be s a t i s f i e d  i f  the  container i s  r ig id .  Two of these r a t io s  can be iden t i f i ed  
a s  the Reynolds and Froude numbers. 
l i qu id  depth, density, and viscosity;  and acceleration. Since a l l  model t e s t s  
a r e  usually performed i n  a l g  acceleration f i e ld ,  it i s  d i f f i c u l t  t o  meet the 
requirements f o r  true simili tude.  
which give a reasonable compromise fo r  scaled density and viscosi ty ,  adequate 
models have been developed. 
addi t ional  dimensionless r a t i o s  must be sa t i s f i ed  by the scaling ( r e f .  12). 
These r a t i o s  t u r n  out t o  be essent ia l ly  the same a s  those f o r  l oca l  vibrat ion 
but the  reference proposes techniques fo r  building adequate models f o r  the 
phenomena. 
container i s  p a r t  of an e l a s t i c  vehicle. I n  t h i s  case, the l a t e r a l  vibrat ion 
parameters must be scaled a s  well as  the sloshing parameters. 

A s  described i n  reference 11, three dimensionless r a t i o s  must 

The important quant i t ies  a re  geometry; 

However, by choosing f lu ids  f o r  the  model 

If the container i s  not r i g id ,  but e l a s t i c ,  several  

S t i l l  another poss ib i l i t y  fo r  slosh coupling occurs when the f l u i d  

Buffetin&.- Dimensionless r a t io s  which a r e  lmown t o  require scal ing i n  
modeling f o r  aerodynamic buffeting are Mach number and Reynolds number ( r e f .  13).  
Caref'ul a t t en t ion  must be given t o  geometry and l o c a l  configuration d e t a i l s  
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since the scale of roughness, E, i s  a l s o  expected t o  influence the  r e su l t s .  A 
dimensional analysis of a l l  per t inent  quant i t ies  i s  contained i n  reference 14 .  
A s  presented i n  table I, the  r a t i o s  apply only fo r  buffet  on a r i g i d  vehicle.  
If t h e  responses of t he  vehicle must be determined i n  addi t ion t o  pressure f luc -  
tuat ions,  t he  buffet  model may be required t o  scale  the  l a t e r a l  vibrat ion char- 
a c t e r i s t i c s  of the vehicle ( f o r  gross buf fe t )  o r  t he  l o c a l  vibrat ion character-  
i s t i c s  ( f o r  l o c a l  bu f fe t ) .  

. Flut te r . -  F lu t t e r  models have been used f o r  many years i n  a i r c r a f t  develop- 
ment and this experience appl ies  d i r ec t ly  t o  launch-vehicle f l u t t e r .  New 
scaling, construction, and t e s t i n g  problems w i l l  be those normally associated 
with new configurations. 
i s  given i n  reference 6. 

An excel lent  discussion of f l u t t e r  modeling techniques 

Ground winds.- The last problem t o  be mentioned i s  ground winds. A s a t i s -  
factory ana ly t ica l  treatment of t h i s  problem i s  s t i l l  unavailable so  models a re  
being used almost exclusively i n  desi@. 
shown t o  be very important parameters ( r e f .  1 4 ) .  The major'aerodynamic param- 
e t e r  i s  Reynolds number. Additionally, lateral  vibrat ion propert ies  must be 
scaled i n  order t o  study the  response. Mach number, usually important only i n  
the  sense t h a t  it must be much l e s s  than one, i s  an t ic ipa ted  t o  cause d i f f i c u l t y  
i n  scaling future  very large vehicles,  such a s  Nova. For these very la rge  vehi- 
c l e s ,  available wind tunnels l i m i t  t h e  s i ze  of t he  model with the  r e s u l t  t h a t  
velocity must be increased t o  obtain fu l l - sca le  Reynolds number. For a vehicle 
t he  s i ze  of Nova, model ve loc i ty  must be increased t o  t h e  point where Mach num- 
ber becomes s igni f icant  and model r e s u l t s  might be d is tor ted .  

Local geometry and roughness have been 

APPLICATIONS TO LAUNCH VM1CI;ES 

One-Fifth-Scale Vibration Model of Saturn 

The complexity of launch-vehicle s t ruc tures  has increased u n t i l  ana ly t i ca l  
techniques f o r  predict ing t h e i r  v ibra t ion  cha rac t e r i s t i c s ,  f o r  use i n  s t a b i l i t y  
and dynamic loads s tudies ,  are not always r e l i ab le .  
dynamic replica model of t he  Saturn SA-1  launch vehicle was constructed a t  
Langley Research Center t o  e s t ab l i sh  t h e  f e a s i b i l i t y  of obtaining required 
experimental vibrat ion data with a model. Model and fu l l - sca l e  vibrat ion t e s t  
vehicles a re  shown i n  t h e i r  vibrat ion towers i n  f igure  2. 
high (compared with 160 f e e t  f o r  t he  f u l l  s ca l e )  and weighs about 7,500 pounds 
(compared with 935,000 pounds f o r  t h e  f u l l  s ca l e ) .  

Therefore, a 1/5-scale 

The model i s  32 feet  

Description.- The 1/5-scale Saturn model w a s  b u i l t  f o r  t he  study of l a t e r a l  
bending vibrations; therefore ,  t he  important parameters t o  be scaled were the  
mass-stiffness r a t io s .  
not scaled since they did not contr ibute  t o  s t i f fnes s ;  however, l ead  b a l l a s t  
weights were used t o  simulate t h e i r  mass. 
c i p a l  i n t e re s t  were the ove ra l l  vehicle  modes, so  l o c a l  panel s t i f fnes ses  were 
not scaled. 
s idered t o  have a secondary e f f e c t  on t h e  ove ra l l  vehicle  v ibra t ion  and s o  were 
not scaled f o r  t he  i n i t i a l  p a r t  of t h e  t e s t .  

Such things as aerodynamic f a i r i n g  and f u e l  piping were 

Furthermore, t h e  vibrat ions of pr in-  

Such things as fuel sloshing and t h e  suspension system were con- 
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The type of scaling chosen for  the Saturn model was a component-by- 
component uniform reduction of dimensions t o  one-fifth of the fu l l - sca le  values, 

~ using the  same materials as  the  r U l l  scale. 
I chosen because of the  s t ruc tu ra l  complexity of the Saturn booster with the  

resu l t ing  d i f f i cu l ty  of determining accurate equivalent s t i f fnes s  and mass prop- 
e r t i e s  f o r  the many multiple-beam trusswork assemblies incorporated i n  the  
vehicle. 
i s  shown i n  f igure 3 .  
and shows t h a t  s t ruc tu ra l  de t a i l s  such a s  s k i n  corrugations, buil t-up r iveted 
beams, tension rods, and longitudinal s t i f feners  i n  the outer tanks have been 
duplicated on the  model; however, de t a i l s  such as the  number of r ive t s ,  aero- 
dynamic f a i r ing  supports, and piping supports a r e  not true scale  reproductions. 

This rep l ica  type of scal ing was 
I 

' 
I 

An example of model duplication of fu l l - sca le  multiple-beam structure  
This f igure i s  a close-up view of the base of the  vehicle 

Two important s t ruc tu ra l  simplifications were made on the  model. 
the  engines were simplified a s  shown i n  figure 4. 
of gravity,  and moment of i n e r t i a  were scaled. The simulated engines were 
firmly attached a t  the gimbal point without attempting t o  scale  actuator s t i f f -  
nesses. Second, some r ing  frames were omitted from the s h e l l  s t ructure  of the 
second stage. A view of the a f t  end of the second stage showing i ts  in t e rna l  
construction i s  shown i n  f igure 5. About 70 percent of the second-stage weight 
is cmt.aFned i n  the b a l l a s t  tank a t  the center, which i s  supported by the eight  
r ad ia l  t russes  attached t o  the  outer she l l .  The outer s h e l l  i s  attached t o  the 
f i r s t  stage only a t  the  eight points a t  the ends of the r ad ia l  t russes  and thus 
forms the pr inc ipa l  load s t ructure  of the second stage. Several r ing  frames on 
the  fu l l - sca le  vehicle were omitted from the  outer-shell  load-carrying s t ruc ture  
on the  model, resu l t ing  i n  some d is tor ted  vibration r e su l t s  which w i l l  be dis- 
cussed subsequently. 

F i r s t ,  
Only the t o t a l  weight, center 

.- The Saturn model was scaled by se lec t ing  a length scale  fac tor  
and using the  same materials on the model as  on the prototype. 

Therefore, the following re la t ions  a r e  established: 

Then, i n  order t o  maintain the  dimensionless r a t i o s  of tab le  I f o r  l a t e r a l  
vibrat ions,  the mass and time scale  fac tors  must be: 

Other re la t ionships  between model and prototype parameters, resu l t ing  from the 
dimensionless r a t i o s ,  are:  
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1. 

2.  

3 .  

4. 

5.  

l m  - 1 Mass moment of i n e r t i a :  - - 

( E I ) m  - 1 Bending s t i f fnes s :  - - - 

Bending frequency: - f m  = 5 
fP 

fm 
fP 

Sloshing frequency: - = fi 

Shel l  frequency: - f m  = 5 
fP 

Comparison of  the bending and sloshing frequency r a t i o s  shows t h a t  t he  
fu l l - sca le  bending-sloshing frequency re la t ionship  i s  not maintained on t h e  
model. Thus, the  in te rac t ion  of vehicle bending with sloshing on the  model w i l l  
not represent d i r ec t ly  the  fu l l - sca le  s i tua t ion .  For the  Saturn configuration, 
where the f i r s t  sloshing frequency i s  lower than the  f i r s t  bending frequency, 
t he  reduction t o  model s i ze  separates t he  frequencies, thus tending t o  uncouple 
the  sloshing from the bending modes. The s h e l l  frequency re la t ionship  i s  based 
on an unstiffened s h e l l  with t h e  same mater ia l  and i n t e r n a l  pressure i n  both 
model and fu l l  scale.  Comparison of t he  bending with t h e  s h e l l  frequency r a t i o  
shows tha t  in te rac t ion  of l o c a l  s h e l l  vibrat ion with vehicle bending vibrat ion 
should be the  same on the  model as on the  f u l l  scale  i n  those cases where model 
construction and in t e rna l  pressure are the  same as the  full scale .  

Results.- Some r e s u l t s  of t he  model vibrat ion t e s t  are shown i n  f igures  6, 
7, 8, and 9. 
vehicles i s  shown with the  vehicle  ballasted t o  simulate the  maximum-dynamic- 
pressure weight condition. This f igure  shows almost exact agreement between 
model resonant frequency, when adjusted by the  scale  fac tor ,  and the  fu l l - sca l e  
resonant frequency. 
t o  duplicate,  on the  model, t he  suspension system used t o  simulate f ree-free 
boundary conditions on the  fu l l - s ca l e  vehicle .  The mode shapes of t he  f u l l -  
scale  and model vehicles are i n  good agreement as can be seen from comparison 
of the  c i r c l e s  with the  square symbols. 
f r ee  t o  deflect  independently of t he  center  tank except a t  t h e i r  ends, a r e  shown 
i n  t h i s  f igure t o  have the  same deflect ion as the  center tank, and t h i s  mode has 
the  appearance of t he  more conventional bending modes obtained with nonclustered 
vehicles.  

I n  f igure  6 the  f i r s t  vibrat ion mode of t h e  model and fu l l - sca l e  

In  order t o  obtain such good agreement, it w a s  necessary 

The booster outer  tanks, which a r e  

I n  contrast ,  t h e  second v ibra t ion  mode, shown i n  f igure  7, shows one of t h e  
unusual vibration modes associated with t h e  clustered arrangement of the  Saturn 
booster. There i s  about a lo-percent difference i n  frequency between model and 
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f u l l  scale  i n  t h i s  mode, and comparison of the c i r c l e s  with the  squares shows 
f a i r l y  good agreement of model with ful l -scale  mode shape. The typ ica l  outer 
tank indicated by the  flagged symbols i s  seen t o  def lec t  i n  the opposite direc-  
t i o n  as the  center tank. Cross-section A-A a t  t h e  midsection of t h e  booster 
shows t h a t  when the  center tank def lec ts  upward as indicated by the  arrow the  
outer tanks are def lect ing independently i n  the  downward direction. 
sual mode shape where t h e  outer  tanks deflect  i n  the  opposite d i rec t ion  from 
the  center tank i s  associated with the  clustered arrangement of the  booster 
tanks and has been termed a c lus t e r  mode. 

~ 

~ 

This mu-  

The e f f ec t  of omission of the  r ing  s t i f f ene r s  from the  outer s h e l l  of t he  
second stage i s  i l l u s t r a t e d  by figure 8, which shows the  fourth vibrat ion mode 
of t he  l/’f-scale Saturn model. I n  the  area of the  second stage two def lect ion 
curves are shown. The open c i r c l e s  indicate  the  def lect ion of t he  outer  s h e l l  
and the  so l id  c i r c l e s  t he  def lect ion of t he  inner b a l l a s t  tank. The data indi-  
ca te  t h a t  t h e  outer  s h e l l  and the  b a l l a s t  tank a re  def lect ing i n  opposite direc- 
t ions .  This can be explained by examination of cross-section B-B. The so l id  
l ines  i n  this sketch ind ica te  the  undisturbed posi t ion of the water-f i l led bal- 
last  tank, t h e  eight  radial t russes ,  and the outer  she l l ;  the  data points  ind i -  
ca te  t h e  experimentally determined vibration amplitude. This cross sect ion 
shm-s that t h e  mter she l l  i s  vibrat ing i n  a s h e l l  mode with seven waves, while 
t he  center tank i s  t rans la t ing .  
the  inner and outer tanks, respectively,  are i n  opposite direct ions,  as shown 
a l s o  i n  the  sketch i n  the  center. 
s h e l l  shown here w a s  observed on the  model i n  the  higher-frequency modes f o r  
most weight conditions; however, no s h e l l  modes i n  t h e  second stage were 
observed on t h e  fu l l - s ca l e  Saturn vibration tes t  vehicle.  

r 

The deflections measured a t  points  A and B 0x1 

The shell mode i n  t h e  second-stage outer  

The mode shapes and resonant frequencies which have been shown were meas- 
ured a t  t h e  weight condition which simulates f l ight near maximum dynamic pres- 
sure. A n  indicat ion of how the  resonant frequencies of model and full sca le  
compare a t  other  weight conditions i s  shown i n  f igure  9. The ordinate i s  fu l l -  
sca le  frequency, i n  cycles per  second, and the  abscissa i s  water l e v e l  i n  the  
booster stage,  i n  percent. Zero percent corresponds t o  f i r s t - s t age  burnout 
while 100 percent corresponds t o  l i f t - o f f .  
ured a t  48 percent fu l l .  
shown as c i r c l e s  while fu l l - s ca l e  frequencies a r e  shown a s  squares. 
bending mode frequency shows almost exact agreement except a t  l i f t - o f f ,  where 
the  model frequency i s  about 7 percent high. 
i s  predicted by the  model t o  within 10 percent. 
between model and f u l l  scale  i s  not as good. 

The previously shown data were meas- 
Model frequencies, adjusted by the scale  f ac to r ,  are 

The f i rs t  

The f i r s t  c lu s t e r  mode frequency 
For higher modes, agreement 

The data presented i n  f igure  9 were obtained using an eight-cable suspen- 
s ion system which duplicated a similar suspension system used f o r  fu l l - s ca l e  
tests. 
which gave much b e t t e r  separation between suspension frequency and bending f r e -  
quency than t h e  eight-cable system had given model f i rs t  bending frequencies 5 
t o  10 percent lower than fu l l - sca le  frequencies. 
importance of properly accounting f o r  suspension system e f fec t s  i n  comparing 
model and fu l l - sca le  data and of properly in te rpre t ing  ground t e s t  data when 
extrapolat ing t o  f l i g h t  conditions. 

Ea r l i e r  model t e s t s ,  using a two-cable f ree-free suspension system 

This r e su l t  indicated the  
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Saturn V Dynamic Models 

Figure 10 i l l u s t r a t e s  t he  present modeling pro jec t ,  which i s  a l / l0 -sca le  
rep l ica  model of the  Saturn V.  The model i s  36 f e e t  high, including the  Apollo 
payload. The general type of construction of the  full scale  i s  shown including 
skin s t r inger ,  waffle pa t te rn ,  i n t eg ra l ly  milled s t r inge r ,  and corrugated skin.  
The model w i l l  duplicate a l l  of these e s sen t i a l  d e t a i l s  up t o  the  Apollo payload. 
For t h e  Apollo payload, simulation techniques a re  being used, whereby the  E I ,  
AE, G J ,  and mass d is t r ibu t ion  are matched. 

On the r igh t  of the f igure  i s  shown a scalloped or mult icel led tank con- 
cept,  which i s  a l so  being constructed and w i l l  replace the  cy l indr ica l  f i rs t  
stage for  l a t e r  t e s t s .  

I n  addition t o  the  l / l0 -sca le  model, a l / b - s c a l e  model i s  being constructed 
which i s  shown i n  f igure 11. 
struct ion is  shown i n  f igure  12. On t h e  lower l e f t  i s  shown t h e  five-engine s i m -  
u la t ion.  
spring-mass assembly. 
the  vehicle, and the  spring constants as well as the  mass can be changed. 

An i l l u s t r a t i o n  of the  details of t he  model con- 

Next t o  t h e  engine a r e  two f u e l  slosh simulators, using a ttbird-cage't 
These simulators can be placed a t  various posi t ions on 

Fuel Slosh 

One of the  problem areas i n  t e s t i n g  l iquid-fueled vehicles i s  the  e f f ec t  
of f u e l  slosh. 
f l i g h t  time f o r  t he  cy l indr ica l  tank a s  well  a s  the  scalloped tank. 
bending i s  shown as  a dashed l i n e ,  f l i g h t  f u e l  slosh a s  a s o l i d  l i n e ,  range of 
p i t ch  frequency by the shaded area,  a l i n e  depicting a l / l0-scale  model f u e l  
slosh frequency and fu l l - sca le  ground-test frequencies. A ra ther  la rge  separa- 
t i o n  i n  frequency ex i s t s  between the  f u e l  bending mode and the  f l i g h t  f u e l  slosh 
frequency. 
ra ther  weak even i n  the  f l i g h t  case. 
quencies as indicated,  but s ince t h e  f u e l  slosh i s  already r a the r  w e l l  uncoupled, 
the  l/lO-scale model r e s u l t s  should dupl icate  the  fu l l - sca le  f l i g h t  r e s u l t s  with 
very minor differences.  
t he  proper f u e l  slosh frequency would not be exactly simulated a s  shown due t o  
the  l g  f i e l d  i n  which the vehicle must be tested. 

In  f igure  13 several  s ign i f icant  frequencies a r e  p lo t t ed  against  
F i r s t  

Thus coupling of t he  f u e l  s losh mode with t h e  e l a s t i c  mode w i l l  be 
A l / l0 -sca le  model would have lower f r e -  

A s  a matter of f a c t ,  even fo r  fu l l - s ca l e  ground tes ts ,  

On the right side i s  shown the  eYfect of t he  system frequencies of a 
scalloped tank. This i s  due 
t o  the  basic design c r i t e r i a  of maintaining the  same i n t e r n a l  pressure and ver- 
t i c a l  load-carrying a b i l i t y  a s  i n  t h e  cy l ind r i ca l  tank. 
mater ia l  being used c loser  t o  t h e  tank center thus reducing the  moment of i n e r t i a  
and consequently the bending s t i f fnes s .  
quency has increased due t o  compartmentation. 
approaching each other while moving the  fue l  slosh frequency away from the  r ig id -  
body frequency, which, of course, i s  benef ic ia l .  However, a de f in i t e  coupling 
between fuel slosh and the  fundamental v ibra t ion  modes now e x i s t s .  In  cases 
such as t h i s ,  the  adequacy of t he  s t r u c t u r a l  duplication of t h e  model may be 
checked against ana ly t ica l  representat ion f o r  fuel s losh frequencies w e l l  
removed from the  coupling poss ib i l i t y .  

Note t h a t  t he  bending frequency has been reduced. 

This r e s u l t s  i n  more 

On the  other hand, t he  fuel slosh fre- 
Thus, t he  two frequencies a re  

m e n  with confidence i n  the  s t r u c t u r a l  
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1 adequacy, the e f f ec t  of f u e l  slosh having frequencies i n  the neighborhood of the  
fundamental frequencies may be estimated f o r  control system design. ! 

I 

I 

I 
Buffeting 

Buffeting forces on a launch vehicle a r i se  a s  a r e s u l t  of unsteady flow 
around corners, bluff bodies, protuberances, e tc . ,  during transonic f l i g h t .  
Calculation of these osc i l l a t ing  pressures i s  v i r tua l ly  impossible, and resor t  
t o  modeling techniques i s  necessary. 

I 

I 
Several avenues a re  open t o  the modelist. One involves the detai led pres- 

sure measurement on a r i g i d  scaled model, u t i l i z i n g  the pressures t o  calculate  
the vehicle response. A second method i s  t o  construct a f lex ib le  scaled model 
and t o  measure the desired output. Both methods a re  being used, each having 
i t s  own advantages and disadvantages. The method t o  be discussed here involves 
the use of an e l a s t i c  model i n  which the t o t a l  vehicle response i s  measured. 
The pressure-measurement technique i s  described i n  more d e t a i l  i n  reference 15. 

It is  convenient t o  separate buffet  in to  two types, depending on the re la -  
t i o n  beiween tbe freqdency c?f t.he i n p t  w i t h  respect t o  (1) the frequency of 
t he  vehicle l a t e r a l  bending modes, and (2)  the frequencies of the  loca l  s t ruc-  
t u r a l  elements. 
s t ruc tu ra l  modes the term "gross buffet" will be used, whereas i f  the  input Pre- 
quency i s  r e l a t ive ly  high and w i l l  exci te  loca l  s t ructures  and panels, the  term 
" loca l  buffet" will be applied. 

That is ,  i f  the major input frequency can exci te  the lower 

Gross buffet .-  Modeling f o r  gross buffet  s tudies  requires simulation of 
the  aerodynamic shape, Mach number, Reynolds number, and proper scaling of the  
s t ruc tu ra l  parameters t o  provide simulation of the lower l a t e r a l  modes and f r e -  
quencies. 
dynamic scal ing of buffet ,  a 1/25-scale model of a typ ica l  launch vehicle w a s  
b u i l t  and t e s t ed  a t  Langley Research Center. Figure 13 shows the model. The 
geometrical scale  of t h i s  model was established by t h e  maximum s ize  t h a t  could 
be accommodated i n  the  tunnel without inducing severe blocking a t  transonic 
speeds. 

I n  order t o  explore the problems associated with s t ruc tu ra l  and aero- 

One of t he  major d i f f i c u l t i e s  i n  performing such a t e s t  i s  t o  reduce a s  
much as possible the e f fec t  of the  model res t ra ining system since primary 
i n t e r e s t  i s  centered on r e su l t s  applicable t o  the  f l i g h t  of the  vehicle i n  a 
free-free condition. For aerodynamic reasons, no supporting s t ructure  should 
be exposed t o  the  airstream, e i the r  ahead of or  around the model. This d ic ta tes  
a so-called s t i n g  support which i s  essent ia l ly  a cantilevered beam, i l l u s t r a t e d  
i n  f igure 14. 
Thus there  are introduced several  additional e l a s t i c  degrees of freedom which 
do not appear on the  free-f l ight  hardware. 
the  s t i n g  support frequency t o  the model support frequency was made as  low as 
possible i n  order t o  avoid large coupling e f fec ts  with the l a t e r a l  bending mode. 
The following t ab le  indicates  the  resul tant  frequencies: 

The model i s  connected t o  t h i s  beam by f lex ib le  supports as  shown. 

For the present model, the r a t i o  of 



Sting - model 12 cps 

Model - p i t ch  ( r i g i d )  22 cps 

F i r s t  l a t e r a l  bending 85 CPS 

Second l a t e r a l  bending 223 CPS 

A s  can be seen, a reasonable separation of t he  frequencies w a s  obtained. 
model pi tch spring was designed mainly from the  standpoint of s t a t i c  aerodynamic 
axial and p i tch  loads. 

The 

Two nose cone configurations were investigated,  one s t r a igh t  cone cylinder 
as i l l u s t r a t e d ,  and the  same model with a bulbar nose. 
i n s t a l l ed  f o r  the  purpose of measuring the  dynamic bending-moment response. 
Figure 15 shows the  power spectra  of t he  bending moment f o r  a given Mach number 
and Reynolds number. 
response than the  cone cylinder.  
first and second l a t e r a l  modes and there  i s  l i t t l e  e f f ec t  of extraneous modes. 
The response a t  the  lower frequency portion i s  due t o  t h e  s t i n g  model r e s t r a i n t  
but it i s  f e l t  t h a t  t h i s  will not influence the  r e su l t s  a t  t he  l a t e r a l  bending 
frequencies. 

S t r a in  gages were 

Note t h a t  t h e  bulbar nose shape induces a much greater  
The two la rge  peaks shown correspond t o  the  

The results of t h i s  invest igat ion ind ica te ,  i n  general, t h a t  useful infor-  
mation concerning gross buffet  can be obtained using a small e l a s t i c  model; and, 
spec i f ica l ly ,  t h a t  a bulbar nose induces more e l a s t i c  buf fe t  response of the  
model vehicle than a conical nose. 

Local buffeting.-  Local buffeting, as t h e  name implies, involves only a 
small portion of the vehicle,  i . e . ,  panels, adapters,  f a i r ings ,  e t c .  The fun- 
damental frequency of these components i s  usual ly  much higher than t h e  la teral  
bending modes and, hence, w i l l  not normally be coupled. However, there  always 
remains t h e  poss ib i l i t y  of a la teral  def lec t ion  inducing l o c a l  buckling, which 
could have a large influence on the  response t o  turbulence of a pa r t i cu la r  l o c a l  
section. 
s t i f f n e s s  i s  almost as la rge  a job as bui lding the  prototype, pa r t i cu la r ly  when 
an e f f o r t  i s  made t o  simulate the  panel edge conditions and s t r u c t u r a l  damping. 
The model would, of necessity,  be ra ther  la rge  and would be almost impossible 
t o  tes t  i n  avai lable  transonic wind tunnels without flow blockage i n  t h e  t e s t  
sect ion.  An obvious solut ion i s  t o  u t i l i z e  fu l l - s ca l e  o r  large-scale components 
f o r  tunnel tests. 
a r t i f i c i a l l y  produced since the  proper shape, protuberances, e t c . ,  are not i n  
f ront  of the t e s t  specimen. A t  t he  present t i m e  t he  only p r a c t i c a l  method i s  
t o  measure the  l o c a l  pressures on a small, r i g i d  model and attempt t o  estimate 
the  e f fec t  of this pressure f luc tua t ion  on the  l o c a l  sect ion by ana ly t i ca l  means. 
A p a r t i a l  application of t h i s  technique t o  one configuration i s  presented i n  
reference 16. 
s t i l l  i n  a developmental stage.  

To construct a complete model of t h e  vehicle simulating the  l o c a l  

However, t h e  proper turbulence environment would have t o  be 

Suffice it t o  say t h a t  techniques f o r  studying l o c a l  buffet are 
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. *  . 
Ground Wind Model 

A model of a launch vehicle fo r  the  investigation of ground wind loads w i l l  
be discussed a s  a f i n a l  example of the application of dynamic models. Ground 
winds a r e  a problem because a launch vehicle is  exposed t o  the variable surface 
winds during the f i n a l  stages of the countdown when the  gantry and protecting 
s t ructure  a re  removed. 
may be divided i n t o  two components - a drag load p a r a l l e l  t o  the wind and a 
l a t e r a l  load normal t o  the wind. The steady drag loads can be predicted ade- 
quately since aerodynamic charac te r i s t ics  can be measured or  estimated ra ther  
well. However, the loads normal t o  the wind direction a r e  osc i l la tory  i n  nature 
due t o  a flow breakdown around the cyl indrical  vehicle and theore t ica l  proce- 
dures, except f o r  the  Von Karman vortex shedding concept, a re  not available.  
Hence, model techniques a r e  mandatory. 

The loads induced on the launch vehicle by the winds 

Both fu l l - sca le  and dynamic model investigations of the ground wind loads 
on a Scout launch vehicle have been conducted by the Langley Research Center. 
The Scout i s  a four-stage solid-propellant booster which i s  capable of put t ing 
a l5O-pound payload i n t o  a 300-nautical-mile orb i t .  
moment were made on the prototype and on a 15-percent scaled model a s  shown i n  
f igure 16. 
scaled fo r  the model t e s t s .  
Transonic Dynamics Tunnel and the unpublished model r e su l t s  t o  be shown were 
obtained by Mr. Wilmer H. Reed, 111. 
ence 17. 
Reynolds number, reduced frequency lio/V, and mass r a t i o  m/pL2. 
se lected fo r  the  t e s t  can use e i the r  a i r  or  Freon 12 a s  a t e s t ing  medium, but 
for  t h i s  study Freon I 2  was found t o  be desirable pr incipal ly  from the  stand- 
point of Reynolds number simulation. The model was a s t e e l  s h e l l  with some 
aluminum used i n  upper-stage areas. It contained d is t r ibu ted  mass ba l las t ing  
i n  order t o  simulate the f irst  bending frequency of the vehicle since the  phe- 
nomenon of i n t e r e s t  was the osc i l la tory  response normal t o  the airstream. 

Measurements of the bending 

Due t o  iis pi*oxii;;itj t o  the vehicle, the gantry tower was a l so  
The model was tes ted  i n  the Langley i 6 - ~ o o t  

Full-scale t e s t  r e su l t s  a r e  from refer -  
The pr incipal  nondimensional parameters used i n  model design were 

The tunnel 

Results of the  investigation a re  shown i n  f igure 17. The root-mean-square 
bending moment a t  the base of the vehicle i s  p lo t ted  against the  average wind 
speed. The fu l l - sca le  t e s t  r e su l t s  a r e  indicated by the so l id  points and the 
model r e su l t s  by the open symbols. 
the  method of reference 18 t o  account fo r  differences i n  frequency and damping 
between t h e  model and f u l l  scale.  
wind, a s  i l l u s t r a t e d  a t  the top of t he  figure, the c i rcu lar  points a r e  f o r  t he  
wind f i rs t  passing through the tower, and the diamonds a re  fo r  the  wind passing 
first over t h e  model, then over the tower. 
response i s  i n  a plane normal t o  the wind direction. 

The model r e su l t s  have been corrected by 

The square points a r e  r e su l t s  f o r  a s ide 

In  each case, the bending-moment 

Considerable sca t t e r  i s  evident i n  the fu l l - sca le  data, although the loads 
a r e  higher than those predicted by the  model. Insofar as  design of the pa r t i c -  
ular vehicle i s  concerned, t he  bending moments shown a re  well below ultimate 
bending moment and no operational problem is anticipated.  
modeling viewpoint, an explanation of the  d is tor t ion  between model and full 
scale  i s  desirable .  
the atmosphere i s  causing larger  response on the fu l l - sca le  vehicle than t h e  

However, from a 

A possible explanation would be t h a t  na tura l  turbulence i n  



low turbulence flow i n  the wind tunnel causes on the model. Note tha t  model 
r e su l t s  a r e  i n  much be t t e r  agreement with fu l l - sca le  data when the airflow i s  
through the  tower instead of from the side o r  f ront .  Since flow through the 
tower would tend t o  equalize turbulence leve ls  on the f u l l  scale  and the model, 
t h i s  would tend t o  support the turbulence explanation f o r  the d is tor t ion  i n  the  
resu l t s .  

Summarizing Statement 

A s  mentioned previously, dynamic models were extensively used i n  support 
of t he  development of a i r c r a f t .  
c l e s  modeling techniques were not used due mainly t o  the  crash programs unde? 
which they were conducted. With the advent of t he  large space program, however, 
r e l i a b i l i t y  has become a key fac tor  - i n  many cases only one or  two expensive 
payloads of one kind a re  available and r e l i a b i l i t y  has become v i t a l .  
t o  improve r e l i a b i l i t y ,  dynamic models can play a paramount role ,  not only t o  
obtain direct  design data but also t o  check ana ly t ica l  techniques. 
dynamic models have been used very successf i l ly  f o r  vehicle vibration modes and 
frequency determination, f u e l  slosh s tudies ,  and buffeting and ground wind 
research. The model technique i s  advantageous from the  standpoint of economy 
of money, men, and time. 

Early i n  the development of large launch vehi- 

I n  order 

So f a r ,  

Some of the remaining areas requiring fur ther  invest igat ion and study are:  

(1) Coupling of f u e l  slosh with f l ex ib l e  modes f o r  the  close coupling 
s i tua t ion  and development of be t t e r  simulation techniques. 

(2 )  Use of models t o  study the  response of the shel l - l ike s t ruc ture  t o  
random disturbances such a s  buffeting and acoustics.  

( 3 )  Simulation of the proper aerodynamic input f o r  ground wind models. 

16 
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Problem area 

Lateral  vibrations 

TABU I 

Dimensionless r a t io s  
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SOME STRUCTURAL DYNAMICS MODELING PARAMETERS 

Longitudinal vibrations 

Local vibrations 
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E’ Pw 3 ’ 7’ 7’ E’ E’ 
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Ground winds 
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. p  
J 

h in microns; PA in watts cm-2 p - 1 .  Third column is 
the cumulati+u+percentage of energy. 

0.22 0.0030 0.02 
07225 0.0042 0.03 
0.23 0.0052 0.05 
0.235 0.0054 0.07 
0.24 0.0058 0.09 

0.245 0.0064 0.11 
0.25 0.0064 0.13 
0.255 0.010 0.16 
0.26 0.013 0.20 
0.265 0.020 0.27 

0.27 0.025 0.34 
0.275 0.022 0.43 
0.28 0.024 0.51 
0.285 0.034 0.62 
0.29 0.052 0.77 

0.295 0.063 0.98 
0.30 0.061 1.23 
f e . 3 J 5  0.067 1.43 
0.31 0.076 1.69 
0.315 0.082 1.97 

0.32 0,085 2.26 
0.325 0.102 2.60 
0.33 0.115 3.02 
0.335 0.111 3.40 
0.34 0.111 3.80 

0.345 0.117 4.21 
G.35 0.118 4.63 
0.355 0.116 5.04 
0.36 0.116 5.47 
0.365 0.129 5.89 

0.37 0.133 6.36 
0.375 0.132 6.84 
0.38 0.123 7.29 
0.385 0.115 7.72 
0.39 0.112 8.13 

0.395 0.120 3.54 
0.40 0.154 9.03 
0.405 0.188 9.65 
0.41 0.194 10.3 
0.415 0.192 11.0 

0.42 0.192 11.7 
0.425 0.189 12.4 
0.43 0.178 13.0 
0.435 0.182 13.7 
0.44 0.203 14.4 

0.445 0.215 15.1 
0.45 0.220 15.9 
0.455 0.219 16.7 
0.46 0.216 17.5 
0.465 0.215 18.2 

0.47 0.217 19.0 
0.475 0.220 19.8 
0.48 0.216 20.6 
0.485 0.203 21.3 
0.49 0.199 22.0 

0.495 0.204 22.8 

0.505 0.197 24.2 
0.51 0.196 24.9 
0.515 0.189 25.6 

0250 0,198 23.5 

0.52 0.187 26.3 
0.525 0.192 26.9 
0.53 0.195 27.6 
0.535 0.197 28.3 
0.54 0.198 29.0 

9.545 0.198 29.8 
0.55 0.195 30.5 
0.555 0.192 31.2 
0.56 0.190 31.8 
0.565 0.189 32.5 

0.57 0.187 33.2 
0.575 0.187 33.9 
0.58 0.187 34.5 
0.585 0.185 35.2 
0.59 0.184 35.9 

0.595 0.183 36.5 
0.60 0.181 37.2 
0.61 0.177 38.4 
0.62 0.174 39.7 
0.63 0.170 40.9 

.- 

0.64 0.166 42.1 
0.65 0.162 43.3 
0.66 0.159 44.5 
0.67 0.155 45.6 
0.68 0.151 46.7 

0.69 0.148 47.8 
0.70 0,144 48.8 
0.71 0.141 49.8 
0.72 0.137 50.8 
0.73 0.134 51.8 

0.74 0.130 52.7 
0.75 0.127 53.7 
0.80 0.1127 57.9 
0.85 0.1003. 61.7 
0.90 0.0895 65.1 

.0.95 0.0803 68.1 
1.0 0.0725 70.9 
1.1 0.0606 75.7 
1.2 0.0501 79.6 
1.3 0.0406 82.9 

1.4 0.0328 85.5 
1.5 0.0267 87.6 
1.6 0.0220 89.4 
1.7 0.0182 90.83 
1.8 0.0152 92.03 

A P ,  cum. 
( c )  (w/cm'w) 

1.9 0.01274 9 3 x  
2.0 0.01079 93.87 
G.1 0.00917 94.58. 
2.2 0.00785 95.20 
2.3 0.00676 95.71 

2.4 0.00585 96.18 
'.5 0.00509 96.57 
2.6 0.00445 96.90 
2.7 0.00390 97.21 
i.8 0.00343 97.47 

2.9 0.00303 97.72 
3.0 0.00268 97.90 
3.1 0.00230 98.08 
3.2 0.00214 98.24 
3.3 0.00191 98.39 

3.4 0.00171 98.52 
3.5 0.00153 98.63 
3.6 0.00139 98.74 
3.7 0.00125 98.83 
3.8 0.00114 98.91 

3.9 0.00103 98.99 
4.0 3.00095 99.05 
4.1 0.00087 99.13 
4.2 O.OOO80 99.18 
4.3 0.00073 99.23 

4.4 0.00067 99.29 
4.5 0.00061 99.33 
4.6 0.00056 99.38 
4.7 0.00051 99.41 
4.8 0.00048 99.45 

4.9 0.00044 99.48 
5.0 0.00042 99.51 
6.0 0.00021 99.74 
7.0 0.00012 99.86 


